Séminaire d'algèbre et de géométrie du 28-11-2022
Exposé de Mehrdad Nasernejad
Le 28-11-2022 à 14:00, en P108 et en ligne.Symbolic strong persistence property of monomial ideals
Informations de connexion
Zoom
- lien: https://univ-artois-fr.zoom.us/j/94870333973?pwd=THhYMEdBV0QwUktYcFUyWmlua0xnZz09
- id de réunion: 948 7033 3973
- code secret : 310504
Résumé
Let I be an ideal in a commutative Noetherian ring R. Then the ideal I has the symbolic strong persistence property if and only if (I^{(k+1)}:_R I^{(1)}) = I^{(k)} for all k, where I^{(k)} denotes the k-th symbolic power of I. In this talk, we first look at the symbolic strong persistence property for some classes of monomial ideals. Next, by using some monomial operations, such as expansion, weighting, monomial multiple, monomial localization, and contraction, we introduce several methods for constructing new monomial ideals which have the symbolic strong persistence property based on the monomial ideals which have the symbolic strong persistence property.