Bâtiment de l'Université d'Artois sous la neige

Séminaire d'algèbre et de géométrie du 28-11-2022

Exposé de Mehrdad Nasernejad

Le 28-11-2022 à 14:00, en P108 et en ligne.

Strong persistence property of monomial ideals

Informations de connexion

Zoom

Résumé

Let I be an ideal in a commutative Noetherian ring R. Then the ideal I has the symbolic strong persistence property if and only if (I^{(k+1)}:_R I^{(1)}) = I^{(k)} for all k, where I^{(k)} denotes the k-th symbolic power of I. In this talk, we first look at the symbolic strong persistence property for some classes of monomial ideals. Next, by using some monomial operations, such as expansion, weighting, monomial multiple, monomial localization, and contraction, we introduce several methods for constructing new monomial ideals which have the symbolic strong persistence property based on the monomial ideals which have the symbolic strong persistence property.